Circuit Breakers: Stop Hammering Dead Services Like a Broken Doorbell šØš
Circuit Breakers: Stop Hammering Dead Services Like a Broken Doorbell šØš
Real confession: The first time our payment service went down at 2 AM, I watched in horror as our API kept sending it 10,000 requests per second. The payment service was already dead, but we kept hammering it like a broken doorbell. Then the timeout cascade started - every request waiting 30 seconds for a response that would never come. Response times: 30+ seconds. Queue depth: 50,000. Server memory: š„
My CTO at 2:15 AM: "Why is EVERYTHING down? I thought only payments were broken!"
Me, realizing I'd just caused a cascading failure: "I... uh... forgot to add circuit breakers." š±
CTO: "You WHAT?"
That night cost us $40,000 in lost transactions and taught me the most expensive lesson of my career: When a service is down, STOP CALLING IT!
Welcome to circuit breakers - the pattern that prevents one sick microservice from taking down your entire architecture!
What's a Circuit Breaker Anyway? š¤
Think of it like the circuit breaker in your house:
Without a circuit breaker:
Microwave + Toaster + Hair Dryer all running
ā Wire overheats
ā Catches fire š„
ā House burns down
With a circuit breaker:
Microwave + Toaster + Hair Dryer all running
ā Wire overheats
ā Circuit breaker trips! ā”
ā Power cuts off
ā No fire, house safe ā
In software:
Without circuit breaker:
Payment Service crashes
ā API keeps sending requests (10,000/sec)
ā All requests wait 30s for timeout
ā Threads exhausted
ā Memory explodes
ā API crashes
ā Entire platform down! š
With circuit breaker:
Payment Service crashes
ā Circuit breaker detects failures
ā Circuit opens (trips)
ā Stops sending requests immediately
ā Returns error instantly
ā API stays alive ā
ā Payment service can recover without being bombarded
Translation: Circuit breaker = Smart switch that stops traffic to failing services and fails fast instead of waiting!
The Cascading Failure That Taught Me Circuit Breakers š
When I was architecting our e-commerce backend, we had a beautiful microservices setup:
Mobile App ā API Gateway ā [User Service, Product Service, Order Service, Payment Service, Inventory Service]
Black Friday 2019, 11:37 PM:
What happened:
// Payment service started having database connection issues
// Response time: 100ms ā 5s ā 30s ā timeout
// Our API code (NO circuit breaker):
app.post('/api/checkout', async (req, res) => {
try {
const order = await createOrder(req.body); // 50ms ā
// Call payment service
const payment = await fetch('http://payment-service/charge', {
method: 'POST',
body: JSON.stringify({ orderId: order.id, amount: order.total }),
timeout: 30000 // 30 second timeout!
});
// This line NEVER executes because payment service is down! š
} catch (error) {
// After 30 SECONDS of waiting, we get here
res.status(500).json({ error: 'Checkout failed' });
}
});
// What happened in production:
// 11:37 PM - Payment service database connection pool exhausted
// 11:38 PM - Payment service starts timing out (30s per request)
// 11:39 PM - API has 500 threads waiting for payment service
// 11:40 PM - API runs out of threads (max: 1000)
// 11:41 PM - New requests can't even START processing
// 11:42 PM - API memory at 95%
// 11:43 PM - API starts crashing and restarting
// 11:44 PM - Load balancer marks API instances as unhealthy
// 11:45 PM - ENTIRE PLATFORM DOWN! š„š„š„
// Impact:
// - 8 minutes of complete outage
// - 12,000 failed checkouts
// - $40,000 in lost revenue
// - Trending on Twitter: "Black Friday site crash"
// - My stress level: ššššš
The problem: When payment service was slow/down, we kept calling it. Each request tied up a thread for 30 seconds. We ran out of threads. API died.
One sick microservice killed the entire platform! š±
Circuit Breaker States: The State Machine š°
A circuit breaker has three states:
āāāāāāāāāāāāāāā
ā ā
5 failures ā CLOSED ā All requests
āāāāāāāāāāāāāāāŗ ā (Normal) āāāāā go through
ā ā
āāāāāāāā¬āāāāāāā
ā
ā Failures exceed threshold
ā
ā¼
āāāāāāāāāāāāāāā
ā ā
ā OPEN ā All requests
ā (Tripped) ā fail immediately
ā ā
āāāāāāāā¬āāāāāāā
ā
ā After timeout (30s)
ā
ā¼
āāāāāāāāāāāāāāā
ā ā
ā HALF-OPEN ā Allow 1 test
ā (Testing) ā request through
ā ā
āāāāāāā¬āāāā¬āāāā
ā ā
Success āāāā āāāāŗ Failure
ā ā
ā ā
ā¼ ā¼
CLOSED OPEN
State #1: CLOSED (Normal operation)
- All requests go through to the service
- Circuit breaker monitors for failures
- If failures exceed threshold ā Switch to OPEN
State #2: OPEN (Service is down, stop calling it!)
- All requests fail immediately (no network call!)
- Return cached data or fallback response
- After timeout period ā Switch to HALF-OPEN
State #3: HALF-OPEN (Let's test if it's healthy now)
- Allow ONE test request through
- If success ā Switch to CLOSED (service recovered!)
- If failure ā Switch back to OPEN (still broken)
Circuit Breaker Implementation: The Code š ļø
Basic pattern using the opossum library (my go-to):
const CircuitBreaker = require('opossum');
// Wrap your service call in a circuit breaker
const options = {
timeout: 3000, // If function takes longer than 3s, trigger failure
errorThresholdPercentage: 50, // Open circuit if 50%+ of requests fail
resetTimeout: 30000, // Try again after 30s
volumeThreshold: 10, // Need at least 10 requests before calculating failure rate
};
// The function to protect
async function callPaymentService(orderData) {
const response = await fetch('http://payment-service/charge', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(orderData)
});
if (!response.ok) {
throw new Error(`Payment service returned ${response.status}`);
}
return await response.json();
}
// Wrap it in a circuit breaker
const breaker = new CircuitBreaker(callPaymentService, options);
// Add event listeners (for monitoring)
breaker.on('open', () => {
console.error('šØ Circuit breaker OPEN - Payment service is down!');
sendSlackAlert('Payment service circuit breaker tripped!');
});
breaker.on('halfOpen', () => {
console.warn('š Circuit breaker HALF-OPEN - Testing payment service...');
});
breaker.on('close', () => {
console.log('ā
Circuit breaker CLOSED - Payment service recovered!');
sendSlackAlert('Payment service is back online!');
});
// Use it in your API
app.post('/api/checkout', async (req, res) => {
try {
const order = await createOrder(req.body); // 50ms
// Call payment service through circuit breaker
const payment = await breaker.fire({
orderId: order.id,
amount: order.total,
userId: req.user.id
});
res.json({
success: true,
orderId: order.id,
paymentId: payment.id
});
} catch (error) {
// Circuit breaker failures return error IMMEDIATELY (not after 30s!)
if (error.message === 'Breaker is open') {
// Service is down, return graceful error
return res.status(503).json({
error: 'Payment service is temporarily unavailable. Please try again in a few minutes.',
orderId: order.id, // Order created but payment failed
retryAfter: 60
});
}
res.status(500).json({ error: 'Checkout failed' });
}
});
What changed after adding this circuit breaker:
// Before (no circuit breaker):
// Payment service down
// Request 1: Wait 30s ā Timeout ā Fail
// Request 2: Wait 30s ā Timeout ā Fail
// Request 3: Wait 30s ā Timeout ā Fail
// ...
// Request 500: Wait 30s ā Timeout ā API crashes from thread exhaustion! š„
// After (with circuit breaker):
// Payment service down
// Request 1: Try ā Fail (30s timeout)
// Request 2: Try ā Fail (timeout)
// Request 3: Try ā Fail (timeout)
// Request 4: Try ā Fail (timeout)
// Request 5: Try ā Fail (timeout)
// ā” Circuit breaker opens!
// Request 6: INSTANT fail (no network call!)
// Request 7: INSTANT fail (no network call!)
// Request 8: INSTANT fail (no network call!)
// ...
// API stays alive! ā
// Users get instant error instead of 30s wait! ā
Impact in production:
- Response time during failure: 30s ā 10ms (instant fail)
- API memory usage during outage: 95% ā 40%
- Thread exhaustion: Eliminated completely
- Platform stayed online when payment service crashed! š
Production Circuit Breaker Pattern šÆ
Here's the battle-tested setup I use in production:
// services/circuitBreaker.js
const CircuitBreaker = require('opossum');
const { promisify } = require('util');
const redis = require('redis');
class ResilientServiceClient {
constructor(serviceName, serviceUrl, options = {}) {
this.serviceName = serviceName;
this.serviceUrl = serviceUrl;
const defaultOptions = {
timeout: 3000,
errorThresholdPercentage: 50,
resetTimeout: 30000,
volumeThreshold: 10,
name: serviceName
};
this.breaker = new CircuitBreaker(
this.makeRequest.bind(this),
{ ...defaultOptions, ...options }
);
this.setupEventHandlers();
this.setupFallback();
}
async makeRequest(endpoint, options = {}) {
const url = `${this.serviceUrl}${endpoint}`;
const response = await fetch(url, {
method: options.method || 'GET',
headers: {
'Content-Type': 'application/json',
...options.headers
},
body: options.body ? JSON.stringify(options.body) : undefined
});
if (!response.ok) {
throw new Error(`${this.serviceName} returned ${response.status}`);
}
return await response.json();
}
setupEventHandlers() {
// Monitor circuit state changes
this.breaker.on('open', () => {
console.error(`šØ [${this.serviceName}] Circuit OPEN`);
this.recordMetric('circuit_open', 1);
this.sendAlert(`${this.serviceName} circuit breaker opened!`);
});
this.breaker.on('halfOpen', () => {
console.warn(`š [${this.serviceName}] Circuit HALF-OPEN`);
this.recordMetric('circuit_half_open', 1);
});
this.breaker.on('close', () => {
console.log(`ā
[${this.serviceName}] Circuit CLOSED`);
this.recordMetric('circuit_closed', 1);
this.sendAlert(`${this.serviceName} recovered!`);
});
this.breaker.on('failure', (error) => {
console.error(`ā [${this.serviceName}] Request failed:`, error.message);
this.recordMetric('service_failure', 1);
});
this.breaker.on('timeout', () => {
console.error(`ā±ļø [${this.serviceName}] Request timeout`);
this.recordMetric('service_timeout', 1);
});
this.breaker.on('success', () => {
this.recordMetric('service_success', 1);
});
}
setupFallback() {
// Fallback when circuit is open
this.breaker.fallback(async (endpoint, options) => {
console.log(`š [${this.serviceName}] Using fallback for ${endpoint}`);
// Try to return cached data
const cached = await this.getCachedResponse(endpoint);
if (cached) {
return { ...cached, fromCache: true };
}
// Return graceful degradation
throw new Error(`${this.serviceName} is temporarily unavailable`);
});
}
async getCachedResponse(endpoint) {
// Try to get cached response from Redis
try {
const cacheKey = `cache:${this.serviceName}:${endpoint}`;
const cached = await redis.get(cacheKey);
return cached ? JSON.parse(cached) : null;
} catch (error) {
return null;
}
}
async call(endpoint, options = {}) {
return this.breaker.fire(endpoint, options);
}
recordMetric(metric, value) {
// Send to monitoring (Datadog, CloudWatch, etc.)
// metrics.increment(`${this.serviceName}.${metric}`, value);
}
sendAlert(message) {
// Send to Slack, PagerDuty, etc.
// slack.send(`ā ļø ${message}`);
}
getStats() {
return {
name: this.serviceName,
state: this.breaker.opened ? 'OPEN' : this.breaker.halfOpen ? 'HALF-OPEN' : 'CLOSED',
stats: this.breaker.stats
};
}
}
module.exports = ResilientServiceClient;
Using it for multiple services:
// services/index.js
const ResilientServiceClient = require('./circuitBreaker');
// Initialize clients with circuit breakers
const paymentService = new ResilientServiceClient(
'payment-service',
'http://payment-service:3000',
{
timeout: 5000, // Payment can be slower
errorThresholdPercentage: 40, // More sensitive for payments
resetTimeout: 60000 // Wait longer before retry
}
);
const inventoryService = new ResilientServiceClient(
'inventory-service',
'http://inventory-service:3000',
{
timeout: 2000, // Should be fast
errorThresholdPercentage: 50,
resetTimeout: 30000
}
);
const emailService = new ResilientServiceClient(
'email-service',
'http://email-service:3000',
{
timeout: 10000, // Email can be slow
errorThresholdPercentage: 60, // Less critical
resetTimeout: 20000
}
);
module.exports = {
paymentService,
inventoryService,
emailService
};
Using it in your API:
// routes/checkout.js
const { paymentService, inventoryService, emailService } = require('../services');
app.post('/api/checkout', async (req, res) => {
try {
// Create order
const order = await db.orders.create(req.body);
// Call payment service (with circuit breaker)
const payment = await paymentService.call('/charge', {
method: 'POST',
body: {
orderId: order.id,
amount: order.total,
userId: req.user.id
}
});
// Update inventory (with circuit breaker)
await inventoryService.call('/decrement', {
method: 'POST',
body: { items: order.items }
});
// Send confirmation email (with circuit breaker, non-critical)
emailService.call('/send', {
method: 'POST',
body: {
to: req.user.email,
template: 'order-confirmation',
data: { orderId: order.id }
}
}).catch(err => {
// Email failed but checkout succeeded - log and move on
console.error('Email failed:', err.message);
});
res.json({
success: true,
orderId: order.id,
paymentId: payment.id
});
} catch (error) {
if (error.message.includes('temporarily unavailable')) {
return res.status(503).json({
error: 'Service temporarily unavailable',
retryAfter: 60
});
}
res.status(500).json({ error: 'Checkout failed' });
}
});
Resilience Pattern #2: Retry with Exponential Backoff š
The problem: Sometimes services have transient failures (network blip, temporary overload).
Bad retry pattern:
// BAD: Hammer the service immediately!
async function callService() {
for (let i = 0; i < 5; i++) {
try {
return await fetch('http://service/api');
} catch (error) {
console.log(`Retry ${i + 1}/5`);
// Try again IMMEDIATELY! š„
}
}
throw new Error('Service failed after 5 retries');
}
// Result: 5 failed requests in 0.5 seconds
// Service is already struggling, we just made it WORSE!
Good retry pattern (exponential backoff):
async function callServiceWithRetry(maxRetries = 3) {
let lastError;
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await fetch('http://service/api');
} catch (error) {
lastError = error;
if (attempt < maxRetries - 1) {
// Exponential backoff: 100ms, 400ms, 1600ms
const delay = Math.min(1000 * Math.pow(2, attempt), 10000);
// Add jitter to prevent thundering herd
const jitter = Math.random() * 0.3 * delay;
const waitTime = delay + jitter;
console.log(`Retry ${attempt + 1}/${maxRetries} after ${waitTime}ms`);
await new Promise(resolve => setTimeout(resolve, waitTime));
}
}
}
throw lastError;
}
// Result: 3 requests spread over ~2 seconds with random jitter
// Gives the service time to recover!
When designing our e-commerce backend, exponential backoff + circuit breakers = perfect combo! Retry transient failures, but stop completely if service is truly down!
Resilience Pattern #3: Bulkhead Pattern š¢
The concept: Isolate failures using separate thread pools (like ship bulkheads prevent sinking).
The problem:
// Single thread pool for ALL services
// Payment service is slow ā Uses all 100 threads
// Now inventory service requests CAN'T EVEN START! š
Thread Pool (100 threads):
[Payment] [Payment] [Payment] ... [Payment] (all 100 threads!)
[Inventory] ā Waiting... can't start!
[Email] ā Waiting... can't start!
The solution - Separate thread pools:
// bulkhead-pattern.js
const { Pool } = require('generic-pool');
class BulkheadService {
constructor(name, maxConcurrent = 10) {
this.name = name;
this.maxConcurrent = maxConcurrent;
this.activeRequests = 0;
this.queuedRequests = [];
}
async execute(fn) {
// If at capacity, reject immediately
if (this.activeRequests >= this.maxConcurrent) {
throw new Error(`${this.name} bulkhead full (${this.maxConcurrent} concurrent requests)`);
}
this.activeRequests++;
try {
return await fn();
} finally {
this.activeRequests--;
}
}
getStats() {
return {
service: this.name,
active: this.activeRequests,
capacity: this.maxConcurrent,
utilization: (this.activeRequests / this.maxConcurrent * 100).toFixed(1) + '%'
};
}
}
// Create bulkheads for each service
const paymentBulkhead = new BulkheadService('payment', 20); // 20 concurrent requests max
const inventoryBulkhead = new BulkheadService('inventory', 30);
const emailBulkhead = new BulkheadService('email', 10);
// Usage
app.post('/api/checkout', async (req, res) => {
try {
// Payment service uses its own bulkhead
const payment = await paymentBulkhead.execute(async () => {
return await callPaymentService(req.body);
});
// Even if payment bulkhead is full, inventory still works!
const inventory = await inventoryBulkhead.execute(async () => {
return await updateInventory(req.body.items);
});
res.json({ success: true, payment, inventory });
} catch (error) {
if (error.message.includes('bulkhead full')) {
return res.status(503).json({
error: 'Service at capacity, please retry',
retryAfter: 5
});
}
res.status(500).json({ error: 'Checkout failed' });
}
});
Benefits:
- ā Payment service slowness doesn't affect inventory service
- ā Prevents one service from consuming all resources
- ā Predictable behavior under load
- ā Better resource utilization
A scalability lesson that cost us: Before bulkheads, when email service was slow, it would consume all threads and block checkout. After bulkheads, email could be down completely and checkout still worked! šÆ
Resilience Pattern #4: Timeout Pattern ā±ļø
The most basic but CRITICAL pattern:
// BAD: No timeout - wait forever!
async function callService() {
const response = await fetch('http://service/api');
return await response.json();
// If service is frozen, this waits FOREVER! š
}
// GOOD: Aggressive timeouts
async function callServiceWithTimeout(timeoutMs = 3000) {
const controller = new AbortController();
const timeoutId = setTimeout(() => controller.abort(), timeoutMs);
try {
const response = await fetch('http://service/api', {
signal: controller.signal
});
clearTimeout(timeoutId);
return await response.json();
} catch (error) {
if (error.name === 'AbortError') {
throw new Error(`Service timeout after ${timeoutMs}ms`);
}
throw error;
}
}
My timeout rules:
- User-facing APIs: 500ms - 2s (users won't wait longer)
- Internal services: 3s - 5s (more lenient)
- Background jobs: 30s - 60s (not user-facing)
- File uploads: 5min+ (large files take time)
When architecting on AWS, I learned: Always set timeouts EVERYWHERE! No timeout = potential infinite wait = thread exhaustion = outage!
The Complete Resilience Stack š”ļø
Combining all patterns:
// resilient-service.js
const CircuitBreaker = require('opossum');
class ResilientService {
constructor(name, url, config = {}) {
this.name = name;
this.url = url;
// Circuit breaker
this.breaker = new CircuitBreaker(
this.makeRequest.bind(this),
{
timeout: config.timeout || 3000,
errorThresholdPercentage: config.errorThreshold || 50,
resetTimeout: config.resetTimeout || 30000,
volumeThreshold: 10
}
);
// Bulkhead
this.maxConcurrent = config.maxConcurrent || 20;
this.activeRequests = 0;
// Retry config
this.maxRetries = config.maxRetries || 3;
this.retryDelay = config.retryDelay || 100;
// Fallback
this.fallbackFn = config.fallback;
this.setupMonitoring();
}
async makeRequest(endpoint, options) {
// Bulkhead check
if (this.activeRequests >= this.maxConcurrent) {
throw new Error(`${this.name} bulkhead full`);
}
this.activeRequests++;
try {
// Retry with exponential backoff
let lastError;
for (let attempt = 0; attempt < this.maxRetries; attempt++) {
try {
// Make request with timeout
const response = await this.fetchWithTimeout(endpoint, options);
return response;
} catch (error) {
lastError = error;
if (attempt < this.maxRetries - 1) {
const delay = this.retryDelay * Math.pow(2, attempt);
const jitter = Math.random() * 0.3 * delay;
await new Promise(resolve => setTimeout(resolve, delay + jitter));
}
}
}
throw lastError;
} finally {
this.activeRequests--;
}
}
async fetchWithTimeout(endpoint, options) {
const controller = new AbortController();
const timeout = setTimeout(() => controller.abort(), this.breaker.options.timeout);
try {
const response = await fetch(`${this.url}${endpoint}`, {
...options,
signal: controller.signal
});
if (!response.ok) {
throw new Error(`${this.name} returned ${response.status}`);
}
return await response.json();
} finally {
clearTimeout(timeout);
}
}
async call(endpoint, options = {}) {
try {
return await this.breaker.fire(endpoint, options);
} catch (error) {
// Use fallback if available
if (this.fallbackFn) {
return await this.fallbackFn(endpoint, options, error);
}
throw error;
}
}
setupMonitoring() {
this.breaker.on('open', () => {
console.error(`šØ [${this.name}] Circuit breaker OPEN`);
});
this.breaker.on('halfOpen', () => {
console.warn(`š [${this.name}] Circuit breaker HALF-OPEN`);
});
this.breaker.on('close', () => {
console.log(`ā
[${this.name}] Circuit breaker CLOSED`);
});
}
getHealth() {
return {
name: this.name,
state: this.breaker.opened ? 'OPEN' : this.breaker.halfOpen ? 'HALF-OPEN' : 'CLOSED',
activeRequests: this.activeRequests,
maxConcurrent: this.maxConcurrent,
stats: this.breaker.stats
};
}
}
module.exports = ResilientService;
Using it:
const ResilientService = require('./resilient-service');
const paymentService = new ResilientService('payment', 'http://payment-service', {
timeout: 5000,
errorThreshold: 40,
maxConcurrent: 20,
maxRetries: 2,
fallback: async (endpoint, options, error) => {
// Fallback: save payment for async processing
await db.pendingPayments.create({
orderId: options.body.orderId,
amount: options.body.amount,
retryAt: new Date(Date.now() + 60000) // Retry in 1 min
});
return { status: 'pending', message: 'Payment queued for processing' };
}
});
// Health check endpoint
app.get('/health/services', (req, res) => {
res.json({
payment: paymentService.getHealth(),
inventory: inventoryService.getHealth(),
email: emailService.getHealth()
});
});
Common Circuit Breaker Mistakes (I Made Them All) šŖ¤
Mistake #1: Circuit Breaker Per Endpoint Instead of Per Service
// BAD: Different breaker for each endpoint
const loginBreaker = new CircuitBreaker(login);
const getUserBreaker = new CircuitBreaker(getUser);
const updateUserBreaker = new CircuitBreaker(updateUser);
// If service is down, ALL endpoints should stop!
// This approach opens circuits independently (wrong!)
// GOOD: One breaker per service
const authServiceBreaker = new CircuitBreaker(callAuthService);
// All auth endpoints use same breaker
await authServiceBreaker.fire('/login', data);
await authServiceBreaker.fire('/user', data);
await authServiceBreaker.fire('/update', data);
Mistake #2: No Fallback Strategy
// BAD: Just fail when circuit opens
try {
return await breaker.fire('/users/123');
} catch (error) {
throw error; // User sees error, bad UX!
}
// GOOD: Graceful degradation
try {
return await breaker.fire('/users/123');
} catch (error) {
// Return cached data
const cached = await redis.get('user:123');
if (cached) {
return { ...JSON.parse(cached), fromCache: true };
}
// Or return partial data
return {
id: 123,
name: 'Unknown User',
limited: true,
message: 'Full profile temporarily unavailable'
};
}
Mistake #3: Not Monitoring Circuit State
// BAD: No visibility into circuit breakers
// You don't know circuits are open until users complain!
// GOOD: Monitor and alert
breaker.on('open', () => {
// Send alert to Slack, PagerDuty, etc.
metrics.increment('circuit_breaker.open', { service: 'payment' });
slack.send('šØ Payment service circuit breaker OPEN!');
});
// Dashboard showing circuit states
app.get('/admin/circuit-breakers', (req, res) => {
res.json({
payment: paymentBreaker.stats,
inventory: inventoryBreaker.stats,
email: emailBreaker.stats
});
});
The Bottom Line š”
Circuit breakers aren't optional for production microservices - they're ESSENTIAL for preventing cascading failures!
The essentials:
- Fail fast - Don't wait 30s for a timeout when service is down
- Stop hammering dead services - Let them recover in peace
- Graceful degradation - Return cached/partial data instead of errors
- Monitor circuit state - Know when services are struggling
- Combine patterns - Circuit breakers + retries + bulkheads + timeouts
The truth about resilience:
It's not "our services never fail" - it's "when one service fails, it doesn't take down the entire platform!" You're trading perfect consistency for high availability!
When designing our e-commerce backend, I learned this the hard way: One microservice failure WITHOUT circuit breakers = cascading platform outage. One microservice failure WITH circuit breakers = isolated degradation, platform stays up! šÆ
You don't need circuit breakers from day one for a monolith. But the moment you split into microservices, circuit breakers become MANDATORY! š
Your Resilience Checklist ā
Before going to production with microservices:
- Circuit breakers on ALL external service calls
- Timeouts configured (3-5s max for sync calls)
- Retry logic with exponential backoff
- Bulkheads to isolate service failures
- Fallback strategies (cached data, degraded mode)
- Circuit state monitoring and alerts
- Health check endpoint showing circuit states
- Load tested under failure scenarios
- Documented failure modes and fallbacks
Your Action Plan šÆ
This week:
- Identify all external service calls in your code
- Add circuit breakers to top 3 most critical services
- Add timeouts to ALL HTTP requests
- Test what happens when services are down
This month:
- Add circuit breakers to all services
- Implement retry with exponential backoff
- Add bulkheads for resource isolation
- Set up monitoring for circuit states
This quarter:
- Implement graceful degradation strategies
- Load test under various failure scenarios
- Document all fallback behaviors
- Train team on resilience patterns
Resources Worth Your Time š
Tools I use daily:
- Opossum - Circuit breaker for Node.js
- Resilience4j - For Java/Spring
- Polly - For .NET
Reading:
- Release It! by Michael Nygard (THE book on resilience)
- Hystrix - Netflix's circuit breaker (archived but great learning)
- Circuit Breaker Pattern by Martin Fowler
Real talk: The best resilience strategy is the one you've actually tested in failure scenarios!
Building resilient architectures? Connect with me on LinkedIn and share your circuit breaker war stories!
Want to see my production resilience patterns? Check out my GitHub - real circuit breaker implementations!
Now go forth and fail gracefully! šØāØ
P.S. If your microservices don't have circuit breakers, you're one service failure away from a platform-wide outage. Don't learn this lesson the expensive way like I did! Add circuit breakers TODAY! šø
P.P.S. I once forgot to add a circuit breaker to our email service. When the email API went down, it took 500 threads with it, waiting for 30-second timeouts. API crashed, checkout broke, lost $40K in Black Friday sales. My CTO was NOT happy. Circuit breakers are NOT optional! š±